
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Exploring the impact of different circuits 

implementations in an ATPG system 
Glória Denise Claro da Silva   

Centro de Ciência Computacionais - C3 

Universidade Federal do Rio Grande - 

FURG 

Rio Grande, Brazil 

gloria.claro1209@gmail.com 

Gabriel Soares Porto 

Centro de Ciências Computacionais - C3 

Universidade Federal do Rio Grande - 

FURG 

Rio Grande, Brazil 

gabrielporto@furg.br 

Paulo Francisco Butzen 

Centro de Ciências Computacionais - C3 

Universidade Federal do Rio Grande - 

FURG 

Rio Grande, Brazil 

paulobutzen@furg.br 

Abstract—Over the years, the technology scaling increases the 

system complexity. Also, the nanometer circuits are more fault 

prone. Consequently, the testing process become a challenge to 

overcome. Due the high complexity circuits, ATPG (Automatic 

Test Pattern Generator) tools become very important to 

automatize the testing process. The test pattern generation process 

is highly linked to the circuit logic gates arrangement. A single 

logic function could be implemented in different circuit structures. 

With this in mind, it is interesting to analyze the impact of different 

circuits implementation in an ATPG (Automatic Test Pattern 

Generator) system. Experimental results show that circuits 

mapped with libraries that contain complex logic gates achieve 

better performance in most of cases. However, in some circuits the 

libraries with only basic functions create some exceptions. 
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I. INTRODUCTION 

With the technology scaling over the years, Very-Large-
Scale-Integration (VLSI) designs became a very complex task. 
With the performance increase due to technology scaling, digital 
systems became more fault prone. To ensure the proper system 
operation, there are several challenges to be overcome. One of 
them is the test process. In this context, Automatic Test Pattern 
Generator (ATPG) tools become essential to turn the test process 
possible. 

The pattern generation process performance is linked to the 
logic gates arrangement. There are several circuits structures that 
can implement the same functionality. Each of these versions 
present different behavior in terms of test generation. Some of 
them have faults that can be easier to detect/observe than others, 
or also faults that are impossible to be tested.  

In this context, the paper main objective is to evaluate the 
impact of different implementation of the ISCAS85 [1] 
benchmark set on test pattern generation. Three different 
libraries were used to map the benchmark set, an ATPG tool 
have provided the fault coverage and the test pattern set for each 
circuit.  

For a better understanding of the analysis made in this paper, 
the background necessary to understand the concepts is shown 
in the Section II. Section III presents the used methodology, 
while Section IV discuss and analyze the obtained results. Final 
remarks are presented in Section V. 

II. BACKGROUND 

In this Section, two relevant aspects are presented to a better 
understanding the analysis performed in this work. First, the 
most common circuit design flow, the standard cell design flow, 
is described. Later, the key points related to the ATPG process 
used in this work are presented. 

A. Standard Cell Design Flow 

Nowadays, the main methodology to develop an integrated 
circuit is called Standard Cell design flow. This methodology 
uses a set of standard cells to build the system structure. These 
standard cells are previously designed, characterized and tested. 
This flow provides a faster and more reliable project design. 

Fig. 1 presents the complete Standard Cell design flow, 
starting from the circuit specification until the manufacturing 
process on silicon. This methodology can be described in three 
main steps: High Level synthesis, logic synthesis and physical 
synthesis [2]. 

 

 Fig. 1. Major synthesis steps in the design of digital integrated circuits [2]. 



The High-Level synthesis aims to convert the circuit 
description behavior from a behavioral HDL (Hardware 
Description Language) to a structural representation at RTL 
(register-transfer level) description. The RTL structure contains 
elements like: data storage elements, functional modules and 
data steering logic. 

The next step is the logic synthesis. It uses the RTL 
description created in previous step to generate a new description 
composed by logic gates. The first phase transfer the RTL 
description to a generic structure and optimization independent 
of the technology are performed. After, the generic logic gates 
are replaced by standard gates and finally, optimizations 
dependent of technology are processed. These standard gates are 
in a standard cell library that is already designed, characterized 
and tested. The logic synthesis step determines the logic gate 
arrangement in the circuit. 

The last stage is the physical synthesis. This stage is 
responsible to convert the optimized mapped circuit into a 
physical structure. The main steps in this stage are the placement 
and routing. At the end of this stage, is made the signoff and the 
integrated circuit is ready to be sent to a foundry.  

Depending on the used set of gates, a circuit could be easier 
or harder to generate a test pattern set and, consequently, 
affecting the quality of test process. According to the used 
standard cell library, different versions for the same circuit are 
synthesized and could be optimized to the test process. 

B. Automatic Test Pattern Generation Problem 

Due to the high complexity of VLSI designs, EDA 
(Electronic Design Automation) tools like ATPG become 
essential to make the testing process possible. The principal 
concepts of ATPG problem will be described as follow. 

 
Fig. 2. Test Pattern Generation Circuit Example 

The classical test pattern generation circuit example can be 
generally represented by the Figure 2. This representation 
consists in the comparison of the fault free and a fault prone 
circuits output. Usually, the behavior of the circuit with a fault f 
(faulty circuit) is different from the behavior of the circuit 
without faults (fault free circuit). The test pattern problem is 
addressed as the process to find a test pattern where the primary 
outputs (PO) of the fault-free and fault-prone circuits 
differentiate, i.e., the fault can be noticed in the circuit-under-test 
output. When the process finds a test pattern, it is said that the 
test pattern detects the current fault f. However, there are some 
cases where the behavior of the fault free and faulty circuit is the 
same. Faults that do not affect the circuit PO are called redundant 
faults [3]. 

There are some cases where it is impossible to find a test 
pattern that causes an unexpected output value. Depending 
which cells are used to map a logic circuit, the result could lead 
to a structure more or less controllable and/or observable. In 
other words, when there is not a combination of signals values 
that allow to control the fault f node and/or let the fault effect 
propagate from the fault site to at least one of the primary 
outputs, there is no test pattern that can test the fault f.  

The main objective of and ATPG tool is to generate a 
reduced test set that guarantees a ratio between the number of 
detected faults and total faults reach (fault coverage) close to 
100%. Depending on the standard cell library used to build the 
circuit structure, an ATPG tool can reach better or worse results, 
consequently, a faster or slower testing process. 

III. METHODOLOGY 

To analyze the impact of different circuits implementations 
in an ATPG system considering only combinational circuits, the 
ISCAS85 Benchmarks circuits [1] were mapped and described 
in Verilog through the ABC tool [4]. The libraries used were 
called Max, Med and Min, which are formed by the gates 
presented in Table I, ordered according to the number of 
functions and complexity. It is expected that large standard cell 
libraries result in circuits with reduced number of gates and logic 
depth [5]. Circuits with smaller number of gates and smaller 
logic depth, intuitively tend to present a better controllability and 
observability of internal signals. With this, it is expected to make 
easier the ATPG process. 

TABLE I.          GATES IN LIBRARIES MAX, MED AND MIN. 

 

After mapping, the circuits were tested in a SAT (Boolean 

Satisfiability Method) based ATPG developed in Java using the 

library SAT4J [6]. The ATPG tool was executed for the 

different versions of the circuits, resulting in a several numbers 

of vectors, a certain fault coverage, a CPU time and the number 

of unSAT and aborted faults. The unSAT faults are the faults 

that the SAT solver is not able to find the test pattern, 

consequently, there is no patterns that can test this set of faults. 

The aborted faults are the faults not solved in a specific time. In 

this work the time out value is set to 1s. This value has been 

chosen aiming a good fault coverage without compromise too 

much the CPU time. 

As mention before, the ATPG tool generates three main 

factors: the CPU time, the number of vectors and the fault 

coverage. As expected results, the goal is to achieve a smaller 

number of test pattern set, a reduced CPU time and a fault 

coverage close to 100%. These factors can be related in a Figure 

of Merit metric (FoM), presented in Equation (1). With the FoM 

Library Gates 

Max 

AND2/AND3/AND4/AOI21/AOI22/AOI33/BUFF/INV/

MX2/NAND2/NAND3/NAND4/NOR2/NOR3/NOR4/O

AI21/OAI22/OAI33/OR2/OR3/OR4/XOR2 

Med 
BUFF/INV/NAND2/NAND3/NAND4/NOR2/NOR3/NO

R4 

Min BUFF/INV/NAND2/NOR2 



metric it is possible to compare the performance of ATPG 

methods. The goal is to minimize the FoM value. The metric 

enables to configure the relevance of each factor through the m, 

n and p exponents. This paper uses two configurations resulting 

in metrics represented by Equations (2) and (3). The first one 

prioritizes the pattern set and the second prioritizes the fault 

coverage. These two factors are the most important. The pattern 

set size influence directly the time of the testing process, and 

the fault coverage describes the test pattern set quality. Those 

FoM metrics are aiming to show in numbers which 

implementation is the best for each circuit. 

𝐹𝑜𝑀 = (
1

𝐹𝑐
)
𝑚

∗ (𝑉)𝑛 ∗ (𝐶𝑃𝑈𝑡𝑖𝑚𝑒)
𝑝 (1) 

𝐹𝑜𝑀𝑣 =
1

𝐹𝐶
∗ (𝑉)² ∗ 𝐶𝑃𝑈𝑡𝑖𝑚𝑒  (2) 

𝐹𝑜𝑀𝐹𝐶 = (
1

𝐹𝐶
)² ∗ 𝑉 ∗ 𝐶𝑃𝑈𝑡𝑖𝑚𝑒  

(3) 

IV. RESULTS AND CONCLUSIONS 

The analysis of the results can be divided in two topics. The 
first one presents the features of the Benchmarks mapped with 
the ABC system and the second analyze the results obtained by 
the ATPG tool and discusses the conclusions formulated though 
the Figures of metrics. 

The ISCAS85 Benchmark Circuits mapped by ABC system 
have different amounts of gates and levels according to the 
library used. The results for each circuit are presented in the 
Table II. The first column contains the ISCAS85 benchmark 
circuits and the subsequent columns show the number of gates 
and levels for each circuit mapped with the libraries Max, Med 
and Min. As expected, the libraries with more types of logic 
gates produce circuits with smaller number of gates and levels. 

TABLE II.   NUMBER OF GATES AND LEVELS. 

 

Circuit 

Library Min Library Med Library Max 

#Gates #Levels #Gates #Levels #Gates #Levels 

c432 435 24 197 18 152 14 

c499 680 20 571 16 314 11 

c880 520 20 349 15 210 11 

c1355 680 20 571 16 314 11 

c1908 843 29 563 23 224 14 

c2670 1154 18 807 14 501 10 

c3540 1697 35 1002 29 642 18 

c5315 2295 36 1471 33 980 18 

c6288 4198 90 3352 89 1403 45 

c7552 3055 29 2232 27 1227 15 

The Table III shows the obtained data from the used ATPG 
tool: the CPU time, number of patterns, fault coverage, number 
of unSAT faults and the number of aborted faults for each 
ISCAS85 circuit implementation. The obtained data were used 
to calculate the metrics presented in Equation (2) and (3) for 
each circuits implementation. These results are presented in 
Table IV. The better FOMs are highlighted. We will use these 
metrics to try to identify the best implementation.  

Analyzing the metric presented in Equation (3), which gives 
more importance to the fault coverage, one can notice that in 
60% of the cases, the implementations using the Max library 
achieve the best result. This behavior is due to the smaller 
number of gates, that implies in a smaller fault set, consequently 
a smaller number of test patterns, a smaller or similar fault 
coverage to the other implementations and a considerably 
shorter runtime. In contrast, in 30% and 10% of the cases, 
implementations with the Min and Med library had a better 
performance, obtaining the best or equal results in the three 
aspects analyzed: fault coverage, run time and pattern set. From 
this perspective, the initial hypothesis has to the better 
investigated since depending of the logic of the circuit, an 
implementation mapped with a smaller set of gates available in 
the library can be a good alternative in question of testing 
process. 

TABLE III.   ATPG TOOL VALIDATION FOR THE ISCAS85 CIRCUITS 
IMPLEMENTATIONS. 

Circuit Library 
CPU 

Time(s) 
#Patterns FC 

#unSAT 

Faults 

#Aborted 

Faults 

c432 
Min 848.8 94 89,94% 23 0 

Med 246.2 77 89,42% 68 0 

Max 161.4 65 96,36% 109 0 

c499 
Min 806.9 115 99,66% 6 0 

Med 877.4 146 99,56% 8 0 

Max 895.7 167 99,41% 8 0 

c880 
Min 576.6 108 100,00% 0 0 

Med 536.3 114 100,00% 0 0 

Max 572.9 121 100,00% 0 0 

c1355 
Min 883.4 112 99,66% 6 0 

Med 1106.2 167 99,56% 8 0 

Max 891.2 165 99,41% 8 0 

c1908 
Min 1956.4 163 99,65% 8 0 

Med 1769.6 181 99,43% 11 0 

Max 440.6 142 99,62% 4 0 

c2670 
Min 7846.1 331 94,70% 134 0 

Med 9338.0 350 96,74% 70 0 

Max 4141.8 408 98,15% 37 0 

c3540 
Min 32938.1 233 97,74% 72 16 

Med 11533.9 247 97,31% 77 8 

Max 7148.8 248 98,72% 31 5 

c5315 
Min 23364.2 317 99,60% 21 0 

Med 23776.2 437 99,08% 44 0 

Max 8326.2 295 99,35% 26 0 

c6288 
Min 47618.7 85 99,56% 17 35 

Med 54677.8 254 96,35% 235 134 

Max 3740.5 80 99,88% 1 6 

c7552 
Min 19993.8 297 98,81% 85 0 

Med 41231.0 304 97,68% 159 0 

Max 52745.5 304 98,77% 64 0 

Through the analyze of the metric in Equation (2), which 
gives more relevance to the pattern set, one can notice that the 
previous behavior repeats. The same 60% for the same 
implementations with the Max library, reinforcing the previous 



conclusions that implementations which have more gates for 
mapping tend to obtain the best results for the three analyzed 
aspects. The remaining circuits, representing 40% of the 
circuits, got the best results for the Min library. Thus, it is 
possible to conclude that regardless of the metric used, (2) or 
(3), in most cases, libraries that have a greater number of gates, 
generate a smaller pattern set and a high fault coverage in 
function of their reduced number of faults. However, it is also 
seen that depending on the logic of the circuit, a mapping 
containing few types logical gates, such as the Min or Med 
library, even resulting in more gates and levels, can become a 
better alternative mapping for testing process. 

TABLE IV.  FIGURE OF MERIT FOR ISCAS85 BENCHMARK. 

V. FINAL REMARKS 

The paper introduced basic concepts about Standard Cell 
Design Flow and the Test Pattern Generation problem for a 
better understanding of the aimed analysis. Three cell libraries 
were used to map the ISCAS85 circuits aiming to analyze the 
impact in ATPG systems. Based on the obtained data from the 
ATPG tool used and the calculated metrics, it is concluded that 
large libraries obtained better results in 60% of the cases due to 
a smaller fault set. However, the minimum library can be an 
alternative too, representing 40%, depending of the logic of the 
circuit. From this perspective, the initial hypothesis has to the 
better investigated in the future.  
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Circuit Library FOM_FC FOM_V 

c432 

Min 9,86E+04 8,34E+06 

Med 2,37E+04 1,63E+06 

Max 1,13E+04 7,08E+05 

c499 

Min 9,34E+04 1,07E+07 

Med 1,29E+05 1,88E+07 

Max 1,51E+05 2,51E+07 

c880 

Min 6,23E+04 6,73E+06 

Med 6,11E+04 6,97E+06 

Max 6,93E+04 8,39E+06 

c1355 

Min 9,96E+04 1,11E+07 

Med 1,86E+05 3,10E+07 

Max 1,49E+05 2,44E+07 

c1908 

Min 3,21E+05 5,22E+07 

Med 3,24E+05 5,83E+07 

Max 6,30E+04 8,92E+06 

c2670 

Min 2,90E+06 9,08E+08 

Med 3,49E+06 1,18E+09 

Max 1,75E+06 7,02E+08 

c3540 

Min 8,03E+06 1,83E+09 

Med 3,01E+06 7,23E+08 

Max 1,82E+06 4,45E+08 

c5315 

Min 7,47E+06 2,36E+09 

Med 1,06E+07 4,58E+09 

Max 2,49E+06 7,29E+08 

c6288 

Min 4,08E+06 3,46E+08 

Med 1,50E+07 3,66E+09 

Max 3,00E+05 2,40E+07 

c7552 

Min 6,08E+06 1,78E+09 

Med 1,31E+07 3,90E+09 

Max 1,64E+07 4,94E+09 
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