
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Exploring the impact of different circuits

implementations in an ATPG system
Glória Denise Claro da Silva

Centro de Ciência Computacionais - C3

Universidade Federal do Rio Grande -

FURG

Rio Grande, Brazil

gloria.claro1209@gmail.com

Gabriel Soares Porto

Centro de Ciências Computacionais - C3

Universidade Federal do Rio Grande -

FURG

Rio Grande, Brazil

gabrielporto@furg.br

Paulo Francisco Butzen

Centro de Ciências Computacionais - C3

Universidade Federal do Rio Grande -

FURG

Rio Grande, Brazil

paulobutzen@furg.br

Abstract—Over the years, the technology scaling increases the

system complexity. Also, the nanometer circuits are more fault

prone. Consequently, the testing process become a challenge to

overcome. Due the high complexity circuits, ATPG (Automatic

Test Pattern Generator) tools become very important to

automatize the testing process. The test pattern generation process

is highly linked to the circuit logic gates arrangement. A single

logic function could be implemented in different circuit structures.

With this in mind, it is interesting to analyze the impact of different

circuits implementation in an ATPG (Automatic Test Pattern

Generator) system. Experimental results show that circuits

mapped with libraries that contain complex logic gates achieve

better performance in most of cases. However, in some circuits the

libraries with only basic functions create some exceptions.

Keywords—Standard Cell, ATPG, SAT, ABC

I. INTRODUCTION

With the technology scaling over the years, Very-Large-
Scale-Integration (VLSI) designs became a very complex task.
With the performance increase due to technology scaling, digital
systems became more fault prone. To ensure the proper system
operation, there are several challenges to be overcome. One of
them is the test process. In this context, Automatic Test Pattern
Generator (ATPG) tools become essential to turn the test process
possible.

The pattern generation process performance is linked to the
logic gates arrangement. There are several circuits structures that
can implement the same functionality. Each of these versions
present different behavior in terms of test generation. Some of
them have faults that can be easier to detect/observe than others,
or also faults that are impossible to be tested.

In this context, the paper main objective is to evaluate the
impact of different implementation of the ISCAS85 [1]
benchmark set on test pattern generation. Three different
libraries were used to map the benchmark set, an ATPG tool
have provided the fault coverage and the test pattern set for each
circuit.

For a better understanding of the analysis made in this paper,
the background necessary to understand the concepts is shown
in the Section II. Section III presents the used methodology,
while Section IV discuss and analyze the obtained results. Final
remarks are presented in Section V.

II. BACKGROUND

In this Section, two relevant aspects are presented to a better
understanding the analysis performed in this work. First, the
most common circuit design flow, the standard cell design flow,
is described. Later, the key points related to the ATPG process
used in this work are presented.

A. Standard Cell Design Flow

Nowadays, the main methodology to develop an integrated
circuit is called Standard Cell design flow. This methodology
uses a set of standard cells to build the system structure. These
standard cells are previously designed, characterized and tested.
This flow provides a faster and more reliable project design.

Fig. 1 presents the complete Standard Cell design flow,
starting from the circuit specification until the manufacturing
process on silicon. This methodology can be described in three
main steps: High Level synthesis, logic synthesis and physical
synthesis [2].

 Fig. 1. Major synthesis steps in the design of digital integrated circuits [2].

The High-Level synthesis aims to convert the circuit
description behavior from a behavioral HDL (Hardware
Description Language) to a structural representation at RTL
(register-transfer level) description. The RTL structure contains
elements like: data storage elements, functional modules and
data steering logic.

The next step is the logic synthesis. It uses the RTL
description created in previous step to generate a new description
composed by logic gates. The first phase transfer the RTL
description to a generic structure and optimization independent
of the technology are performed. After, the generic logic gates
are replaced by standard gates and finally, optimizations
dependent of technology are processed. These standard gates are
in a standard cell library that is already designed, characterized
and tested. The logic synthesis step determines the logic gate
arrangement in the circuit.

The last stage is the physical synthesis. This stage is
responsible to convert the optimized mapped circuit into a
physical structure. The main steps in this stage are the placement
and routing. At the end of this stage, is made the signoff and the
integrated circuit is ready to be sent to a foundry.

Depending on the used set of gates, a circuit could be easier
or harder to generate a test pattern set and, consequently,
affecting the quality of test process. According to the used
standard cell library, different versions for the same circuit are
synthesized and could be optimized to the test process.

B. Automatic Test Pattern Generation Problem

Due to the high complexity of VLSI designs, EDA
(Electronic Design Automation) tools like ATPG become
essential to make the testing process possible. The principal
concepts of ATPG problem will be described as follow.

Fig. 2. Test Pattern Generation Circuit Example

The classical test pattern generation circuit example can be
generally represented by the Figure 2. This representation
consists in the comparison of the fault free and a fault prone
circuits output. Usually, the behavior of the circuit with a fault f
(faulty circuit) is different from the behavior of the circuit
without faults (fault free circuit). The test pattern problem is
addressed as the process to find a test pattern where the primary
outputs (PO) of the fault-free and fault-prone circuits
differentiate, i.e., the fault can be noticed in the circuit-under-test
output. When the process finds a test pattern, it is said that the
test pattern detects the current fault f. However, there are some
cases where the behavior of the fault free and faulty circuit is the
same. Faults that do not affect the circuit PO are called redundant
faults [3].

There are some cases where it is impossible to find a test
pattern that causes an unexpected output value. Depending
which cells are used to map a logic circuit, the result could lead
to a structure more or less controllable and/or observable. In
other words, when there is not a combination of signals values
that allow to control the fault f node and/or let the fault effect
propagate from the fault site to at least one of the primary
outputs, there is no test pattern that can test the fault f.

The main objective of and ATPG tool is to generate a
reduced test set that guarantees a ratio between the number of
detected faults and total faults reach (fault coverage) close to
100%. Depending on the standard cell library used to build the
circuit structure, an ATPG tool can reach better or worse results,
consequently, a faster or slower testing process.

III. METHODOLOGY

To analyze the impact of different circuits implementations
in an ATPG system considering only combinational circuits, the
ISCAS85 Benchmarks circuits [1] were mapped and described
in Verilog through the ABC tool [4]. The libraries used were
called Max, Med and Min, which are formed by the gates
presented in Table I, ordered according to the number of
functions and complexity. It is expected that large standard cell
libraries result in circuits with reduced number of gates and logic
depth [5]. Circuits with smaller number of gates and smaller
logic depth, intuitively tend to present a better controllability and
observability of internal signals. With this, it is expected to make
easier the ATPG process.

TABLE I. GATES IN LIBRARIES MAX, MED AND MIN.

After mapping, the circuits were tested in a SAT (Boolean

Satisfiability Method) based ATPG developed in Java using the

library SAT4J [6]. The ATPG tool was executed for the

different versions of the circuits, resulting in a several numbers

of vectors, a certain fault coverage, a CPU time and the number

of unSAT and aborted faults. The unSAT faults are the faults

that the SAT solver is not able to find the test pattern,

consequently, there is no patterns that can test this set of faults.

The aborted faults are the faults not solved in a specific time. In

this work the time out value is set to 1s. This value has been

chosen aiming a good fault coverage without compromise too

much the CPU time.

As mention before, the ATPG tool generates three main

factors: the CPU time, the number of vectors and the fault

coverage. As expected results, the goal is to achieve a smaller

number of test pattern set, a reduced CPU time and a fault

coverage close to 100%. These factors can be related in a Figure

of Merit metric (FoM), presented in Equation (1). With the FoM

Library Gates

Max

AND2/AND3/AND4/AOI21/AOI22/AOI33/BUFF/INV/

MX2/NAND2/NAND3/NAND4/NOR2/NOR3/NOR4/O

AI21/OAI22/OAI33/OR2/OR3/OR4/XOR2

Med
BUFF/INV/NAND2/NAND3/NAND4/NOR2/NOR3/NO

R4

Min BUFF/INV/NAND2/NOR2

metric it is possible to compare the performance of ATPG

methods. The goal is to minimize the FoM value. The metric

enables to configure the relevance of each factor through the m,

n and p exponents. This paper uses two configurations resulting

in metrics represented by Equations (2) and (3). The first one

prioritizes the pattern set and the second prioritizes the fault

coverage. These two factors are the most important. The pattern

set size influence directly the time of the testing process, and

the fault coverage describes the test pattern set quality. Those

FoM metrics are aiming to show in numbers which

implementation is the best for each circuit.

𝐹𝑜𝑀 = (
1

𝐹𝑐
)
𝑚

∗ (𝑉)𝑛 ∗ (𝐶𝑃𝑈𝑡𝑖𝑚𝑒)
𝑝 (1)

𝐹𝑜𝑀𝑣 =
1

𝐹𝐶
∗ (𝑉)² ∗ 𝐶𝑃𝑈𝑡𝑖𝑚𝑒 (2)

𝐹𝑜𝑀𝐹𝐶 = (
1

𝐹𝐶
)² ∗ 𝑉 ∗ 𝐶𝑃𝑈𝑡𝑖𝑚𝑒

(3)

IV. RESULTS AND CONCLUSIONS

The analysis of the results can be divided in two topics. The
first one presents the features of the Benchmarks mapped with
the ABC system and the second analyze the results obtained by
the ATPG tool and discusses the conclusions formulated though
the Figures of metrics.

The ISCAS85 Benchmark Circuits mapped by ABC system
have different amounts of gates and levels according to the
library used. The results for each circuit are presented in the
Table II. The first column contains the ISCAS85 benchmark
circuits and the subsequent columns show the number of gates
and levels for each circuit mapped with the libraries Max, Med
and Min. As expected, the libraries with more types of logic
gates produce circuits with smaller number of gates and levels.

TABLE II. NUMBER OF GATES AND LEVELS.

Circuit

Library Min Library Med Library Max

#Gates #Levels #Gates #Levels #Gates #Levels

c432 435 24 197 18 152 14

c499 680 20 571 16 314 11

c880 520 20 349 15 210 11

c1355 680 20 571 16 314 11

c1908 843 29 563 23 224 14

c2670 1154 18 807 14 501 10

c3540 1697 35 1002 29 642 18

c5315 2295 36 1471 33 980 18

c6288 4198 90 3352 89 1403 45

c7552 3055 29 2232 27 1227 15

The Table III shows the obtained data from the used ATPG
tool: the CPU time, number of patterns, fault coverage, number
of unSAT faults and the number of aborted faults for each
ISCAS85 circuit implementation. The obtained data were used
to calculate the metrics presented in Equation (2) and (3) for
each circuits implementation. These results are presented in
Table IV. The better FOMs are highlighted. We will use these
metrics to try to identify the best implementation.

Analyzing the metric presented in Equation (3), which gives
more importance to the fault coverage, one can notice that in
60% of the cases, the implementations using the Max library
achieve the best result. This behavior is due to the smaller
number of gates, that implies in a smaller fault set, consequently
a smaller number of test patterns, a smaller or similar fault
coverage to the other implementations and a considerably
shorter runtime. In contrast, in 30% and 10% of the cases,
implementations with the Min and Med library had a better
performance, obtaining the best or equal results in the three
aspects analyzed: fault coverage, run time and pattern set. From
this perspective, the initial hypothesis has to the better
investigated since depending of the logic of the circuit, an
implementation mapped with a smaller set of gates available in
the library can be a good alternative in question of testing
process.

TABLE III. ATPG TOOL VALIDATION FOR THE ISCAS85 CIRCUITS
IMPLEMENTATIONS.

Circuit Library
CPU

Time(s)
#Patterns FC

#unSAT

Faults

#Aborted

Faults

c432
Min 848.8 94 89,94% 23 0

Med 246.2 77 89,42% 68 0

Max 161.4 65 96,36% 109 0

c499
Min 806.9 115 99,66% 6 0

Med 877.4 146 99,56% 8 0

Max 895.7 167 99,41% 8 0

c880
Min 576.6 108 100,00% 0 0

Med 536.3 114 100,00% 0 0

Max 572.9 121 100,00% 0 0

c1355
Min 883.4 112 99,66% 6 0

Med 1106.2 167 99,56% 8 0

Max 891.2 165 99,41% 8 0

c1908
Min 1956.4 163 99,65% 8 0

Med 1769.6 181 99,43% 11 0

Max 440.6 142 99,62% 4 0

c2670
Min 7846.1 331 94,70% 134 0

Med 9338.0 350 96,74% 70 0

Max 4141.8 408 98,15% 37 0

c3540
Min 32938.1 233 97,74% 72 16

Med 11533.9 247 97,31% 77 8

Max 7148.8 248 98,72% 31 5

c5315
Min 23364.2 317 99,60% 21 0

Med 23776.2 437 99,08% 44 0

Max 8326.2 295 99,35% 26 0

c6288
Min 47618.7 85 99,56% 17 35

Med 54677.8 254 96,35% 235 134

Max 3740.5 80 99,88% 1 6

c7552
Min 19993.8 297 98,81% 85 0

Med 41231.0 304 97,68% 159 0

Max 52745.5 304 98,77% 64 0

Through the analyze of the metric in Equation (2), which
gives more relevance to the pattern set, one can notice that the
previous behavior repeats. The same 60% for the same
implementations with the Max library, reinforcing the previous

conclusions that implementations which have more gates for
mapping tend to obtain the best results for the three analyzed
aspects. The remaining circuits, representing 40% of the
circuits, got the best results for the Min library. Thus, it is
possible to conclude that regardless of the metric used, (2) or
(3), in most cases, libraries that have a greater number of gates,
generate a smaller pattern set and a high fault coverage in
function of their reduced number of faults. However, it is also
seen that depending on the logic of the circuit, a mapping
containing few types logical gates, such as the Min or Med
library, even resulting in more gates and levels, can become a
better alternative mapping for testing process.

TABLE IV. FIGURE OF MERIT FOR ISCAS85 BENCHMARK.

V. FINAL REMARKS

The paper introduced basic concepts about Standard Cell
Design Flow and the Test Pattern Generation problem for a
better understanding of the aimed analysis. Three cell libraries
were used to map the ISCAS85 circuits aiming to analyze the
impact in ATPG systems. Based on the obtained data from the
ATPG tool used and the calculated metrics, it is concluded that
large libraries obtained better results in 60% of the cases due to
a smaller fault set. However, the minimum library can be an
alternative too, representing 40%, depending of the logic of the
circuit. From this perspective, the initial hypothesis has to the
better investigated in the future.

REFERENCES

[1] ISCAS85. (2016) Iscas85 combinational benchmark circuits. [Online].

Available: https://filebox.ece.vt.edu/ mhsiao/iscas85.html

[2] V. N. Kravets, “Constructive multi-level synthesis by way of functional
properties,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 2001.

[3] Y. Matsunaga, “An accelerating technique for sat-based atpg,” in IPSJ
Transactions on System LSI Design Methodology, Feb 2017, pp.39–44.

[4] Berkeley Logic Synthesis and Verification Group. (2013) ABC: A System
for Sequential Synthesis and Verification, Release 30723. Available:
http://www.eecs.berkeley.edu/~alanmi/abc/

[5] Binghong Guan and C. Sechen, "Large standard cell libraries and their
impact on layout area and circuit performance," Proceedings International
Conference on Computer Design. VLSI in Computers and Processors,
Austin, TX, 1996, pp. 378-383.

[6] Université d’Artois. (2017) SAT4J, the boolean satisfaction and
optimization library in Java. Disponível em:<http://www.sat4j.org/>.

Circuit Library FOM_FC FOM_V

c432

Min 9,86E+04 8,34E+06

Med 2,37E+04 1,63E+06

Max 1,13E+04 7,08E+05

c499

Min 9,34E+04 1,07E+07

Med 1,29E+05 1,88E+07

Max 1,51E+05 2,51E+07

c880

Min 6,23E+04 6,73E+06

Med 6,11E+04 6,97E+06

Max 6,93E+04 8,39E+06

c1355

Min 9,96E+04 1,11E+07

Med 1,86E+05 3,10E+07

Max 1,49E+05 2,44E+07

c1908

Min 3,21E+05 5,22E+07

Med 3,24E+05 5,83E+07

Max 6,30E+04 8,92E+06

c2670

Min 2,90E+06 9,08E+08

Med 3,49E+06 1,18E+09

Max 1,75E+06 7,02E+08

c3540

Min 8,03E+06 1,83E+09

Med 3,01E+06 7,23E+08

Max 1,82E+06 4,45E+08

c5315

Min 7,47E+06 2,36E+09

Med 1,06E+07 4,58E+09

Max 2,49E+06 7,29E+08

c6288

Min 4,08E+06 3,46E+08

Med 1,50E+07 3,66E+09

Max 3,00E+05 2,40E+07

c7552

Min 6,08E+06 1,78E+09

Med 1,31E+07 3,90E+09

Max 1,64E+07 4,94E+09

http://www.eecs.berkeley.edu/~alanmi/abc/

